Biometry: A Step by Step Approach

Judith Simon MD Tamale Teaching Hospital, Dept of Surgery/ Ophthalmology

Tamale Teaching Hospital

What is it?

- Measurement of the corneal power and the axial length of the eye
- From these a computer calculates the power of the implant the patient needs to be emmetropic after surgery
- Patients can be also made nearsighted upon request

Why is it necessary?

- To improve uncorrected vision
- In rural/poor urban setting: Eye glasses are not available and/or patients are not able to afford them
- In private clinic setting: patient expectations are increasing, they demand good uncorrected vision

Why is it not done?

 Lack of equipment, time, expertise, motivation, reimbursement

 Need to keep an inventory of different power of IOLs – a bit cumbersome

But...

- Without biometry about 1/3 of patients become either significantly myopic or hyperopic and will have poor uncorrected vision !!!
- With minimal extra effort you can greatly improve outcomes!!!

Needed:

- Instruments:
 - Keratometer
 - A-scan
- Personnel:
 - Optometris
 - Eye-nurse
 - Can train laypeople NOT difficult !

Keratometer

- Manual (cheap)
- Automatic, non-portable usually combined with autorefractometer (expensive)
- Automatic, portable can be used in outreach and in pediatric cataract surgery

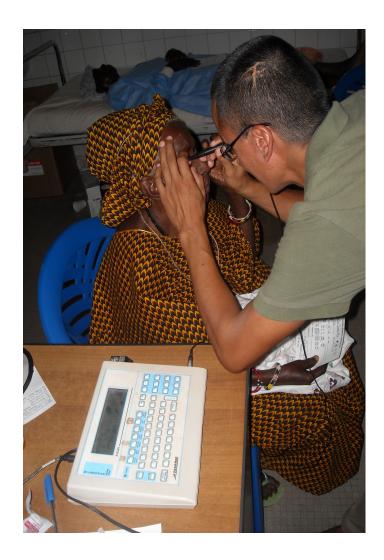
(expensive) – buy one working with regular batteries

Manual keratometry

Keratometer

Align myers

Portable keratometer


Portable keratometry

A-scan

- Better to buy portable can be used on outreaches, price is not different
- Lasts for decades if well taken care of
- Do not drop probe!
- Needs trained personnel to use

A-scan measurement

SRK-II Formula

• IOL Power =

A-constant - 0.9 X K - 2.5 X Axial Length

Myopic eye – longer AL , higher K-s LOWER IOL power Hyperopic eye – shorter AL, flatter K-s HIGHER IOL power

A-constant

- Always written on box of IOL
- Depends on material/shape
- For PC lenses: 118.0 119.2
- If you have different lenses, take average
- Better to use the same IOL brand
- For AC lenses: 115.0 115.3

Error in measurement

IOL Power=A-constant - 0.9 X K - 2.5 X AL

2.5D

- 1 mm difference in Al.
- 1 D difference in K
- 1 difference in A-constant

Error in measurement

- Implanting too high pow MYOPIA
- Implanting too low power HYPEROPIA

Better to err on the side of higher power – better to be myopic!!!

Relationship between IOL power and refraction

- 1D more power results in 0.7 D more of myopia
- 2D more ~ 1.5D
- 3D more ~ 2.0D
- 4D more ~ 3.0D
- 5D more ~ 3.5D

Tricks with keratometry

- Always check both eyes usually the same
- If different, double-check
- If cannot do one eye (eg. Pterygium), use other eye's measurement

How to do A-scan

- Better if always same personnel does it
- Touch probe to center of cornea, aim at center of eye
- Take at least 5 measurements, 8 better
- Machine averages them
- If standard deviation is too high (>0.1), retake

Tricks with A-scan

- If cannot do one eye, use other eye's measurement
- Always do both eyes (unless PT is pseudophakic) and if IOLs are more than 1D different, repeat
- If cannot do one eye, might mean PT has RD, coloboma or other pathology – do B-scan if you have it

Picking the correct IOL

- Aim to 0.5 -1.0 D refraction make pt slightly myopic, unless PT drives
- Just a personal preference, you can aim for emmetropia too

Correcting A-constant

- After about 2-3 months of surgeries, measure your refractive outcome of about 50 patients
- If most of them have the desired refraction, you are doing well
- If some are nearsighted, some are farsighted, you have to improve the quality of your biometry
- If most of them are either near or farsighted, you need to change the A-constant

Measuring refractive outcome

- Take spherical equivalent in a month:
- Eg: -0.50 3.00x90 deg = [-2.75]
- Eg: +1.00 2.00X80 deg= [0.00]
- Eg: +3.00 3.00x110 deg=[+1.50]
- Spherical equivalent stays constant after astigmatism wears off

Correcting A-constant

- If your patients come out too nearsighted, means you are implanting too high IOL
- Decrease A-constant IOL number will be lower
- Ie. You are aiming for -0.5D but PTs are -1.5D, change A-constant from 119.5 to 118.5

Correcting A-constant

- If your patients come out too farsighted, means you are implanting too low IOL
- Increase A-constant IOL number will be higher
- Ie. You are aiming for -0.5D but PTs are +0.5D, change A-constant from 118.5 to 119.5

Monovision after bilateral cataract surgery

- Goal is for PT to see distance and also near without glasses
- Can be achieved only if **biometry** is available
- Improves the PT's quality of life with minimal extra effort – prescription glasses are available only for the affluent part of society

Eye dominance

- Determine by holding up circle from fingers in front of small distance target with both eyes open
- Can also ask PT to shoot or take picture with camera- eye kept open is dominant eye

Eye dominance

Eye dominance

- 80% of people are RIGHT eye dominant
- Dominant eye should be corrected to distance
- Non-dominant eye should be corrected to near
- In a population with lower visual needs, the right eye can automatically be corrected to distance and left to near
- Usually no problem cinically if wrong eye is picked

Calculations

- Add 2 diopters to the IOL power of nondominant eye (usually OS) – this will mean -1.5D myopia
- The brain can tolerate <3.0 D of anisometropia
- It is always better to err on the side of myopia meaning higher IOL power – it is better to be myopic than hyperopic (At least one can see near) – so if in doubt, always implant the HIGHER IOL power.

Examples:

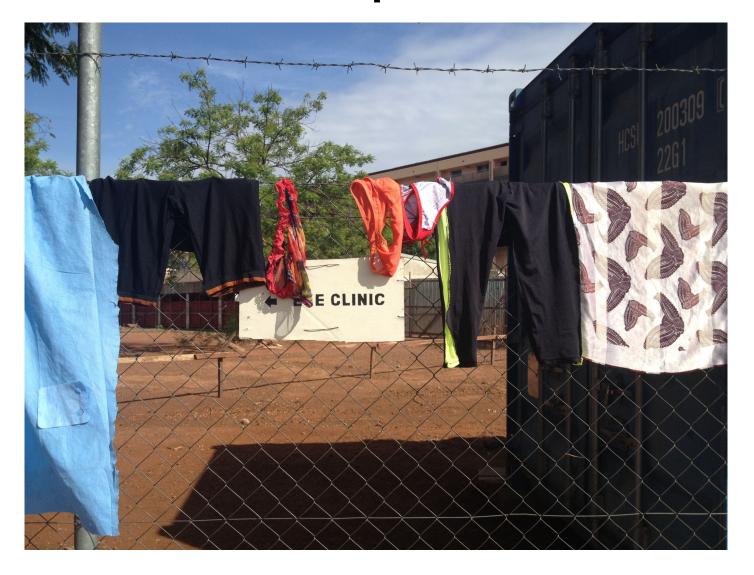
- Biometry is IOL 21 OU implant 21 OD and 23 OS
- Biometry is IOL 19 OD and 21 OS double-check, the two eyes should be within 1D
- If same the second time implant IOL 19 OD and 23 OS
- If biometry is 23D OD and 24D OS, implant 23D OD and 26D OS

Correcting IOL power for monovision after one eye had cataract surgery

- Perform autorefraction or refration on the operated eye
- If eye came out nearsighted, make other eye emmetropic
- If eye came out farsighted, make other eye -2.00D less (to avoid anisometropia)
- If eye is emmetropic, make other eye nearsighted

Examples

- Biometry is 21.0 D OU, but OD is [-1.50D] postop – make OS 19.0 D
- Biometry is 19.0 D OU but OD is [+ 1.0D],


make OS 21 D

 Biometry is 24.0 D OU, and OD is [0.0D], this is as you planned – make OS 26.00-success!!!

Checking outcomes of monovision

 Check uncorrected **binocular** distance and near vision 3 months postop

Thank you for your attention !

