Diabetic retinopathy

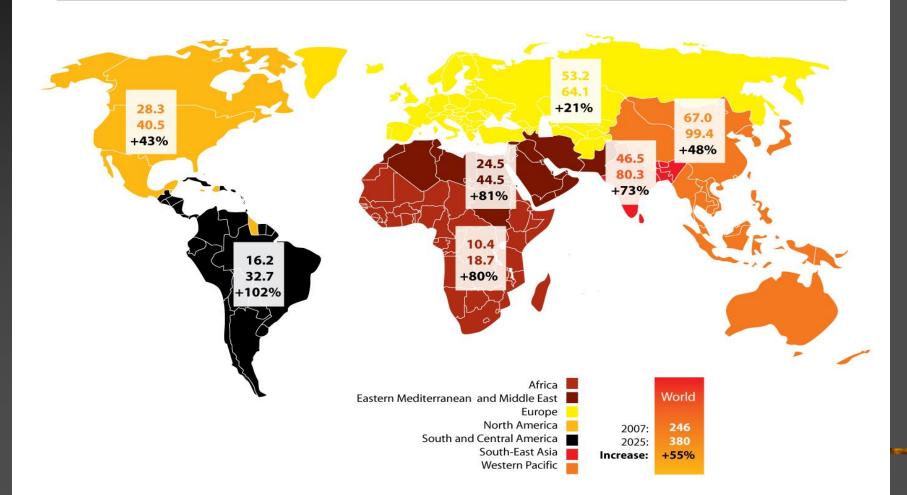
and a second second

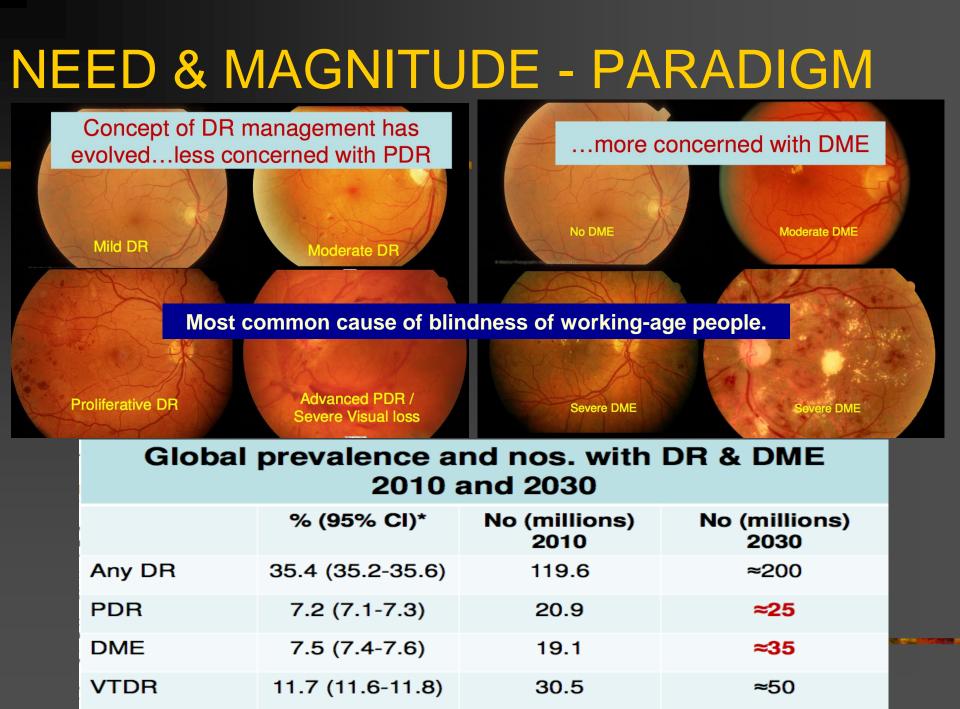
DR. ASIWOME KWESI SENEADZA

Diabetes mellitus

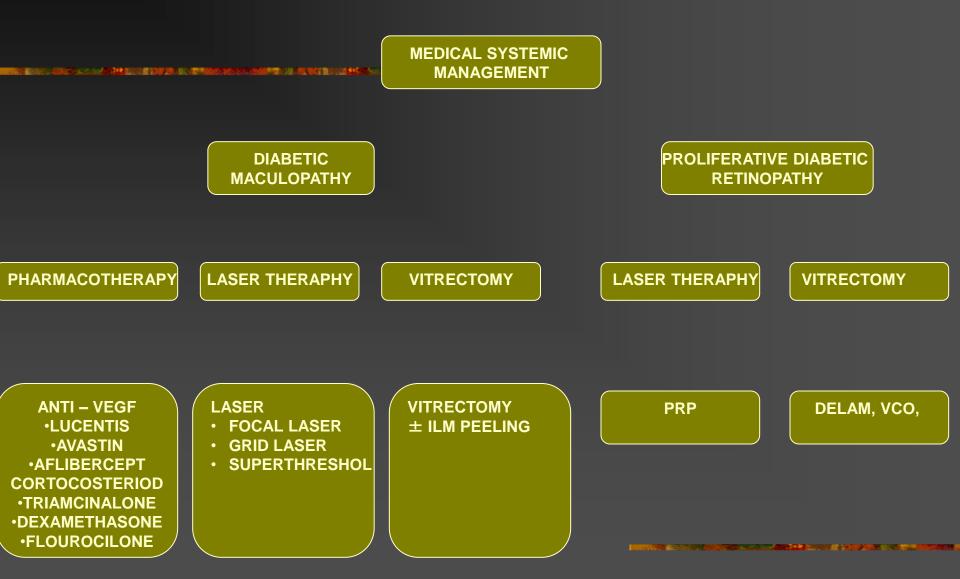
Heterogeneous disorder of carbohydrate metabolism with multiple etiologic factors that ultimately lead to hyperglycemia.

- Type 1 (IDDM) Autoimmune disease (loss of pancreatic islet cells) Begins < 30 yo (childhood)
- Type 2 (NIDDM)


- Deficiency in the regulation of insulin secretion and or in its action at the cellular level in the liver and peripheral tissues.
- Late onset (obese patients)
- Secondary types



Aldose reductase-mediated cell damage, vasoproliferative factors produced by hypoxic retina, growth hormone and platelet, erythrocyte and blood viscosity abnormalities.


GLOBAL MAGNITUDE OF DIABETICS

Global projections for the number of people with diabetes (20-79 age group), 2007-2025 (millions)

MANAGEMENT OF DIABETIC RETINOPATHY

MANAGEMENT OF RETINOPATHY

Evidence: visual loss could be avoided
 Control of glycaemic levels and
 Risk factors
 Improving screening programs

Epidemiology of Diabetes Interventions and Complications (EDIC): design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care. 1999;22: 99-111

SYSTEMIC MANAGEMENT Control of diabetes And Risk Factors

RISK FACTORS

□ Non-modifiable:

Genetic factors, gender and duration of diabetes

□ Modifiable:

Glycaemia, blood pressure, lipid levels, anemia, tobacco and obstructive apnea.

□ Additional factors:

Carotid arterial disease, pregnancy and renal impairment.

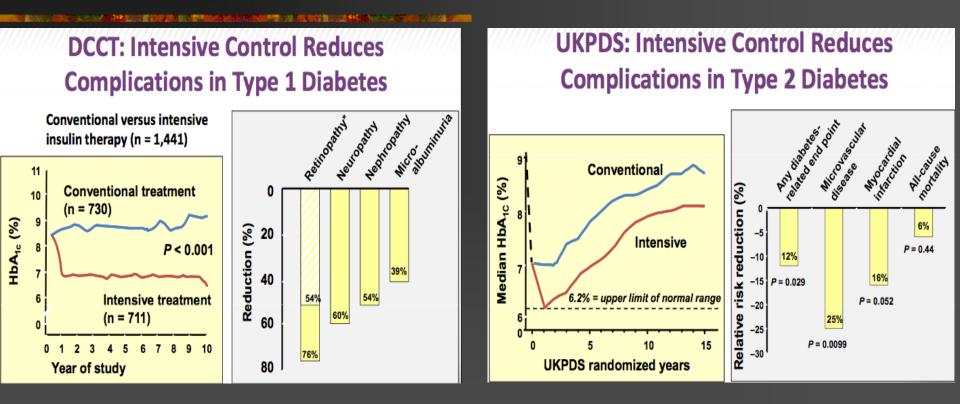
SYSTEMIC MANAGEMENT Glycemic Control

Different studies that have provided good evidence on the importance of glycaemic control on the development of retinopathy and its progression

DRS³: Diabetic Retinopathy Study, 1978

ETDRS⁴: Early Treatment for Diabetic Retinopathy Study, 1984

DRVS⁵: Diabetic Retinopathy Vitrectomy Study, 1981

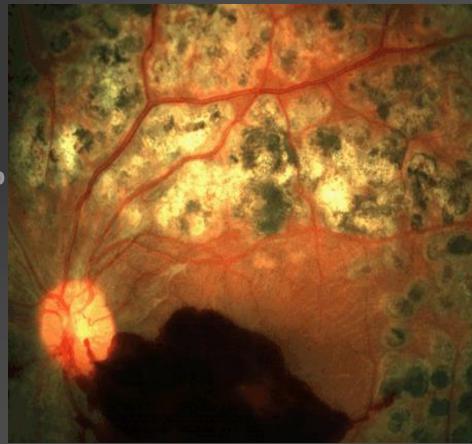

DCCT⁶: Diabetes Control and Complications Trial, 1993

UKPDS⁷: United Kingdom Prospective Diabetes Study, 1998

WESDR⁸: Wisconsin Epidemiologic Study of Diabetic Retinopathy, 1979 Onward

Good glycaemic control early in the course of diabetes has an important impact on long-term outcome of retinopathy. (Level A)

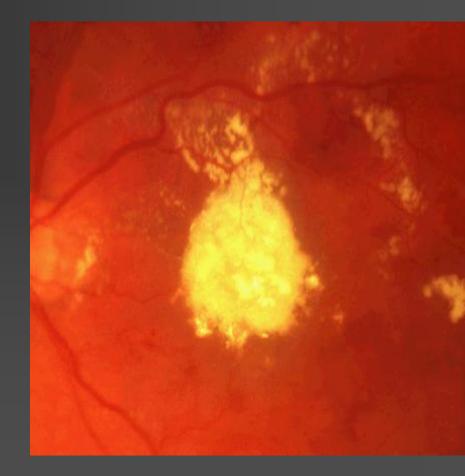
SYSTEMIC MANAGEMENT Glycemic Control (EVIDENCE)



Interventional Study (6 years): Comparing conventional (standard) insulin therapy vrs intensive insulin therapy reduced the risk of development and progression of: Retinopathy 63%, Nephropathy 54%, Neuropathy 60%

Interventional Study (20 years multi-centre prospective Randomized Interventional Trial): Comparing conventional (standard) insulin therapy vrs intensive insulin therapy reduction in: Retinopathy progression 34%, Laser 29%, Blindness 16% **SYSTEMIC MANAGEMENT Glycemic Control (Type 1)**

<u>HBA1C < 7.0%:</u>

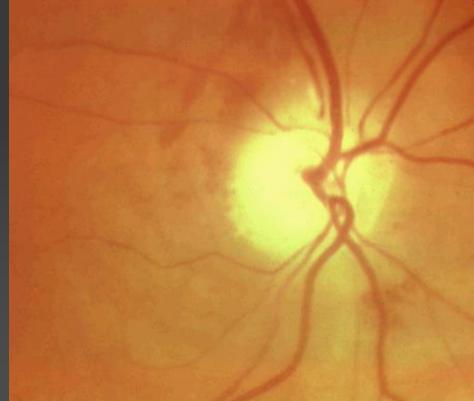

- Delayed onset of DR
- Delayed progression
- Risk-reduction of 52-75% for:
 - Laser coagulation
 - csME
 - severe NPDR
 - PDR

Diabetes Control & Complications Trial Research Group: NEnglJMed 1993; 329 (877-986)
 ** UK Prospective Diabetes Study Group 33: Lancet 1998; 352 (837-853)

SYSTEMIC MANAGEMENT Glycemic Control (Type 2)

- Already 36% DR on Dx!*
- HBA1C reduction of 1%:
- After 12 years moderate <u>Risk-reduction</u> of:
 - 21% for DR
 - 24% for Cataract
- <u>No</u> significant effect before 6 years of intensified BS control!

SYSTEMIC MANAGEMENT Blood Pressure Control


ANTIHYPERTENSIVE TREATMENT:

<u>Type 2</u>:

- <u>34%</u> risk-reduction for progression of <u>DR</u>
- <u>47%</u> risk-reduction for decreasing <u>VA</u>

Type 1:

- No sufficient data
- Indication of beneficial effect (ACE-inhibitors)***

- Gaede P et al: NEnglJMed 2003; 348 (383-393)
- * UK Prospective Diabetes Study Group: Lancet 1998; 352 (837-853)
- *** Chaturvedi N et al: Lancet 1998; 351 (28-31)

SYSTEMIC MANAGEMENT Nephropathy


MANAGEMENT	Procedure	Pathology	Prognosis
Haemodialysis	<u>simple</u>	csME ↑	\downarrow
		VA ↓	
Peritoneal	more	csME ↓	1
<u>Dialysis</u>	difficult	VA ↑	
Kidney	complex	csME ↓	1
Transplant		VA ↑	
Kidney &	complex	csME ↓	1
Pancreas Transplant		VA ↑	

SYSTEMIC MANAGEMENT Pregnancy

DIABETIC RETINOPATHY often worsens considerably during pregnancy:

- b discuss risks before pregnancy
- stabilize existing DR 6-8 months before / early in pregnancy (laser?)
- good metabolic control (don't adjust too aggressively!)
- examine at frequent intervals

Women with GESTATIONAL-DM do <u>NOT</u> develop DR.

PDR after prLC

SYSTEMIC MANAGEMENT Pregnancy

RISKS FOR <u>VISUAL LOSS</u> FROM DM (PREGNACY):

pre-existing DR
duration of DR

- ► csME
- **> PDR**
- hypertension
- chronic hyperglycaemia
- too rapid BS-adjustment

Severe NPDR: CWS / D&P haemorrhages / venous irregularities

SYSTEMIC MANAGEMENT

ne here and the second state and the second state and the second state and the second state and the second state

Chronic <u>HYPERGLYCEMIA</u> and <u>ARTERIAL</u> <u>HYPERTENSION</u> are the most important risk factors for micro-vascular damage in DM

Early <u>DIABETIC RETINOPATHY</u> earmarks the vascular high-risk patient with DM

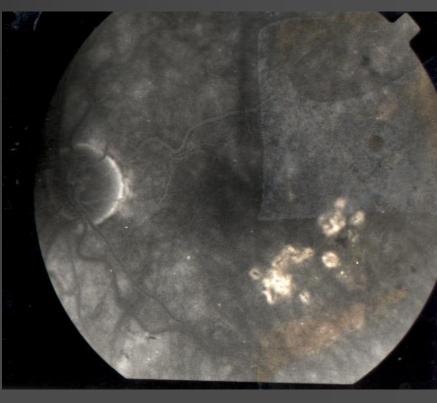
Early manifestation & rapid progression of DR indicate high <u>CARDIO-VASCULAR RISK</u>

Gaede P et al: NEnglJMed 2003; 348 (383-393) Hammes HP: Ophthalmologe 2004; 101 (1159-1164

SYSTEMIC MANAGEMENT Treatment Target To Improve Diabetic Outcome

	ADA Recommen	dations for BP & Lipids fo	
Treatment	Outcomes	People with Diabetes	
Aggressive glucose control	Reduces microvascular events; improves lipids	Parameter	Goal
		Blood pressure	<140/80 mm Hg
		LDL	<100 mg/dL*
Aggressive weight loss	Improves lipids, glucose, BP, other risk factors	Triglycerides	<150 mg/dL
		HDL	>40 mg/dL (men)
			>50 mg/dL (women)
		*LDL <70 mg/dL is a therap	eutic option
Aggressive lipid-lowering	Reduces CVD event rates; possible effect on retinopathy		
		 Controlled BP <130/80mmHg - 51% LDL at the goal level <100mg/dl - 56% A1C at the goal level <7% - 53% 	
Aggressive blood pressure	Reduces kidney damage, eye damage, and CVD		
control			
Anti-thrombosis therapy	Reduces macrovascular event rates		
Disk stor Care 1000-00.04 090 Calcul IX Marte DBI Disk stor Care 1000-000404 0400		What propo	ortion have met all three

-18.8%


Diabetes Care. 2005;28:S4-S38. Colwell JA, Nesto RW. Diabetes Care. 2003;28:2181-2188.

OCULAR (LOCAL) MANAGEMENT

VA may be endangered before any subjective symptoms

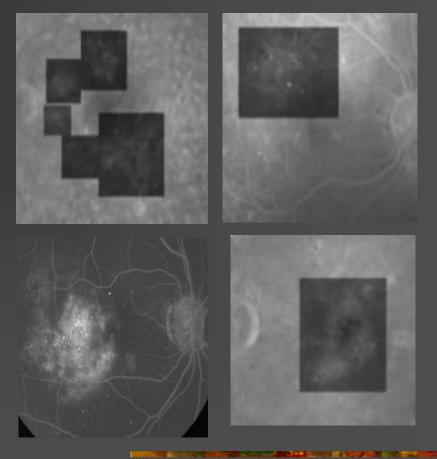
At the time of first symptoms the optimal time for <u>LASER</u> <u>TREATMENT</u> may already have passed

PROGNOSIS clearly depends on optimal timing of local treatment

Central focal laser for focal maculopathy

INVESTIGATION - CLASSIFICATION BASED ON FFA FINDINGS

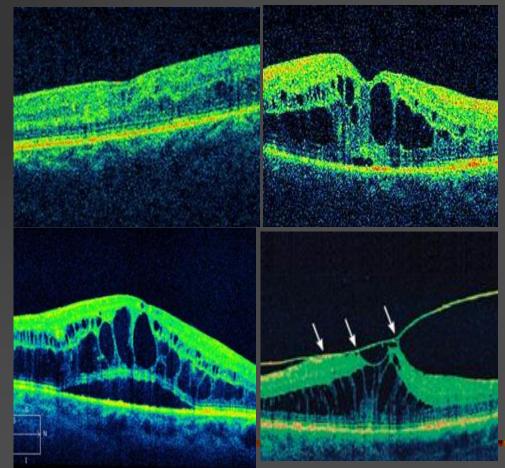
Depending on the location of leakage or loss of blood supply due to capillary loss. DMO can be classified as:


•Focal maculopathy: localized leakage (from 1 or more microAn)

Diffuse/indeterminate maculopathy:

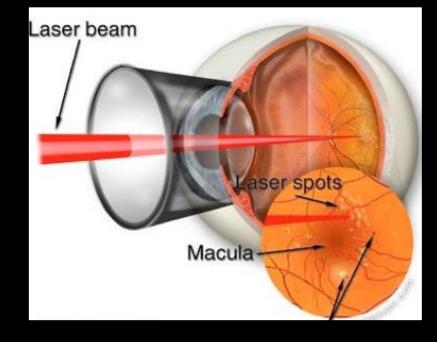
generalised thickening of the central macula caused by widespread leakage from dilated capillaries.

Ischaemic maculopathy: enlargement and alteration of the FAZ.


•Mixed maculopathy: combined pathology, particularly of diffuse oedema and ischaemia

Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5):807-22.

INVESTIGATION - CLASSIFICATION BASED ON OCT FINDINGS


- 1. DIFFUSE MACULAR EDEMA– (SPONGELIKE EDEMA)
- 2. CYSTOID MACULAR EDEMA
- 3. WITH SERIOUS RETAINAL DETACHMENT SRD
- 4. WITH VITREOMACULAR TRACTION

FLA (guidelines)

DIABETIC RETINOPATHY:	FLA:
NPDR without ME	<u>NO!</u>
ME (non-significant)	?
<u>csME</u>	+/- (laser?)
Severe NPDR	?
Non-HR-PDR	
 without csME 	(NV?)
• with <u>csME</u>	+/- (laser?)
HR-PDR	?

MANAGEMENT – LASER TRETAMENT

PHOTOCOAGULATION (HISTORY)

1640 BONETUS (Geneva)

1949 MAYER-SCHWICKERATH (Germany)

- therapeutic use of light-damage to retina
- retinal photocoagulatior

1960 MAIMAN (USA)

- first working lase
- ruby crystal (stimulated by light flash)
- use in Ophthalmology from <u>1963</u>

- **VISIBLE LIGHT**
- > 380 780 nm

LASER

Light Amplification by Stimulated Emission of Radiation

CHARACTERISTICS


monochromatic light

(only 1 wavelength)

spatial coherence

(energy change at same instant \rightarrow corresponding waves)

high density of electrons

PARAMETERS

Number of Spots (N) Spot-size (D = µm) Energy (E = mW) Time (T = ms)

Energy-density = E / µm² Power = E / ms

MODES of DELIVERY

Slit lamp (+ contactglas)

HIO

Endoprobes

Transscieral (e.g. diode / NdYAG)

PHOTOCOAGULATION

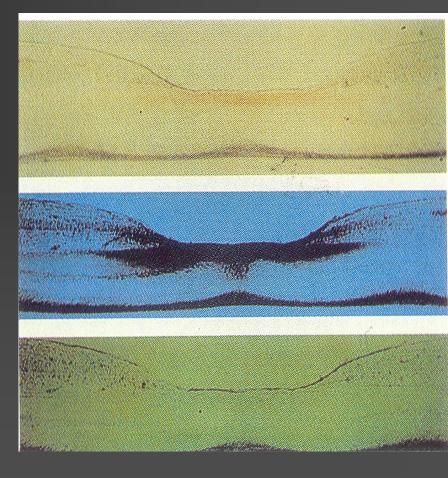
XENON ARC	historical
	(i.o. tumours?)
LASER e.g.	WAVELENGTH:
Argon green	▶ 514 nm
 Frequency doubled NdYAG 	▶ 532 nm
• Krypton	▶ 647 nm
• Diode	▶ 810 nm

LASER (absorption)

ABSORBING PIGMENTS IN THE EYE:

- > MELANIN
- > XANTHOPHYLL
- HAEMOGLOBIN
- > MELANOCYTES
- > LIPOFUSCIN

- ▶ in the RPE
- ▶ in the fovea
- within RBC
- ▶ in choroid & sclera
- ► in ageing retina


LASER	nm	RPE	HAEMOGLOBIN	XANTHOPHYLL
Argon (blue)	488	++++	++	++
Argon (green)	514	++++	++	+
FD NdYAG	532	++++	++	(+)
Dye (y / o)	577	+++	++	-
Dye (o / r)	630	++	-	-
Krypton	647	++	-	
Diode	810	+	-	-

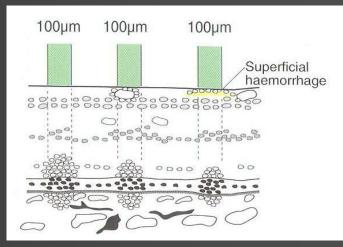
LASER (central absorption)

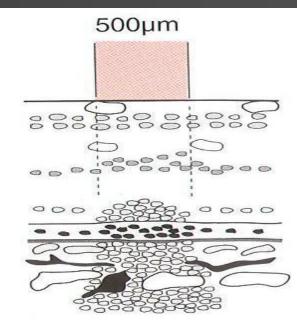
XANTHOPHYLL (macula):

- white light
- <u>blue light</u>
- green light

Xanthophyll absorbs blue light!

LASER (absorption)


ENERGY ABSORBTION & HEAT TRANSMISSION


FD-NdYAG & ARGON LASER:

- right: RPE (ca. 60%)
- middle: retinal blood vessel
- left: superficial haemorrhage

DIODE LASER:

- RPE (ca. 8%)
- greater transmission of light
- greater absorption by melanocytes of choroid

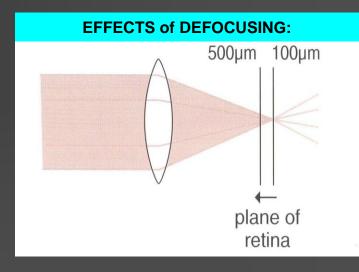
LASER PARAMETERS

n na hara a shekara ka shekara na ka shekara na ka shekara ka ka shekara ka shekara ka shekara ka shekara ka s

SPOT SIZE (µm)

50 - 500 µm (central - panretinal)

- Laser glass
 - Volk Area Centralis
 - Volk Quadraspheric
- Focus (most glasses)
 - anterior shift
 - posterior shift
- Energy
 - high energy
 - low energy
- ► increases spot size


(ca. 1:1)

(> 1:2)

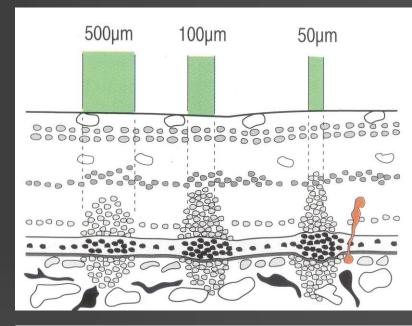
► increases spot size

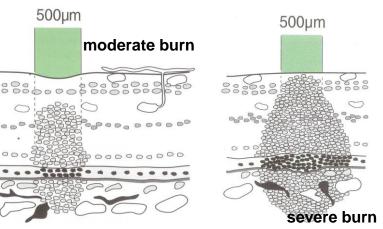
decreases spot size

decreases spot size

LASER PARAMETERS

ENERGY (mW)

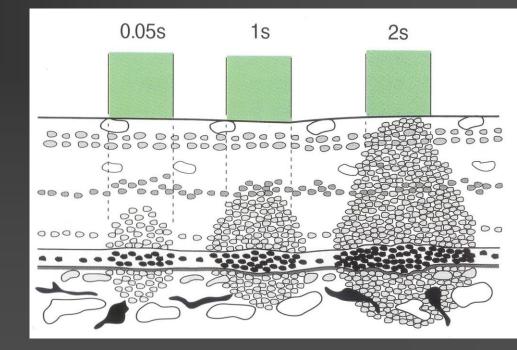

Spot size


E-<u>density</u> changes!
 Power = E / µm²

Threshold PR

Suprathreshold ► damage ↑

- Bruch's membrane
- Choroidal haemorrhage
- Neurosensory retina (horizontal connections / ganglion cell layer)


LASER PARAMETERS

TIME (ms) - DURATION

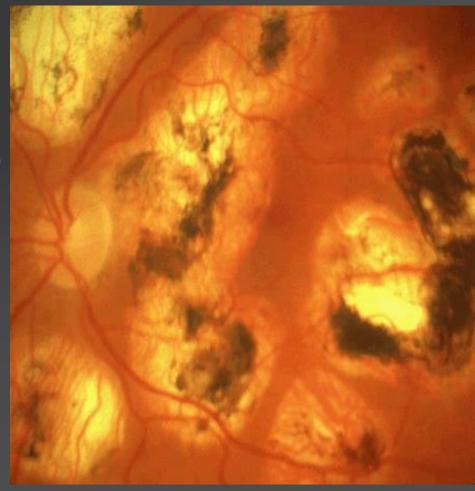
> Spot-size & damage
> Power = E / ms

Longer duration

- more energy / damage
- Shorter duration
 - less energy / damage

LASER (spots & scars)

SPACING:

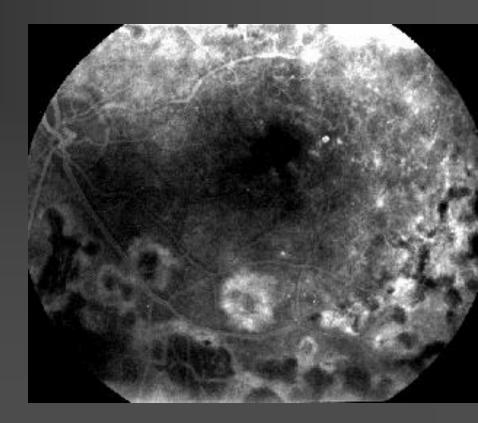

Full scatter (≥ 1200 spots)

- > spacing ≤ 1 spot size
- spots appear larger later!
 (healing processes / scaring)

AREA TREATED:

Retinal Area ≈ 1500 mm²

- prLC (500µm = 0.5mm)
- > area of each burn = πr^2
 - ► 22/7 x 0.25 mm = <u>0.196 mm² per spot</u>
 - ▶ <u>N = 4000</u>: 4000 x 0.196 mm² = 785.7 mm²
 - ► 785.7 mm² / 1500 mm² = <u>52% of retina</u>!


LASER INDICATIONS

NUMERICAL DOMINANCE OF TYPE 2 DM

Previously:
 late NPDR & PDR
 prLC

<u>Today</u>:

moderate NPDR & <u>csME</u> ► central laser

LASER PATTERN

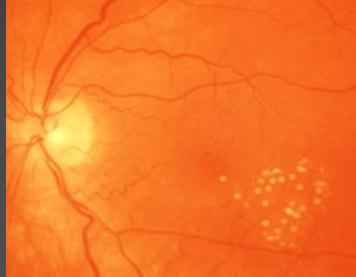
FOCAL pattern	centre (periphery)
<u>GRID</u> pattern	centre
PANRETINAL pattern (prLC)	periphery
 <u>mild</u> scatter (arcades – equator) 	• 600 - 1200 spots
 <u>full</u> scatter (arcades – equator – beyond) 	• ≥ 1200 spots …

CENTRAL LASER

Timely central laser reduces risk for severe VI by 50-75% (ETDRS)

INDICATIONS:

- > csME
- > at any VA?

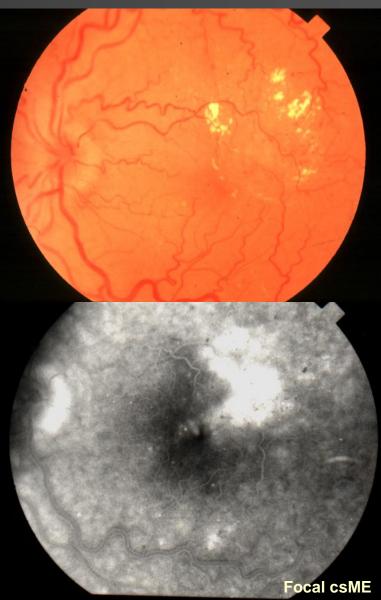

BEST PROGNOSIS:

- ▶ VA ≥ 6/24
- age < 60 years</p>

VISUAL ACUITY:

- stabilization (long-term)!
- initial drop (temporary)?
- may improve (e.g. focal csME)

CENTRAL LASER

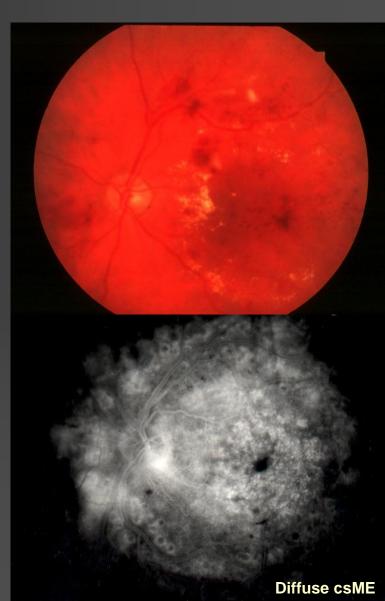

CLINICAL COURSE <u>AFTER</u> CENTRAL LASER:

EXSUDATE

- increase initially?
- decrease slowly
 (3-6 months or longer)
- no indication for more laser!

OEDEMA

- RELEVANT PARAMETER!
- should decrease over 3 months (Fd / FLA?)



CENTRAL LASER

FOLLW UP:

- ▶ observe no csME
- regression FCA 3/12
- no regression $\blacktriangleright LC 2?$

- ▶ observe > no csME
- still csME
- ► LC 2

ETDRS – STUDY FINDINGS

- Laser photocoagulation reduced the rate of moderate vision loss by 50% in eyes with CSME
 - 35% of patients in laser-treated group continued to have DME after 1 year

• 24% at 3 years

 12% of treated eyes still lost 15 or more ETDRS letters at 3 years

- 40% of patients required retreatment within 1 year
- Only 3% had > 3 lines of improvement
- Only 17% had any improvement in vision after 5 years

ETDPS Report #1 Arch Ophthelmol 103:1706-808, 1985

TREATMENT TECHNIQUES

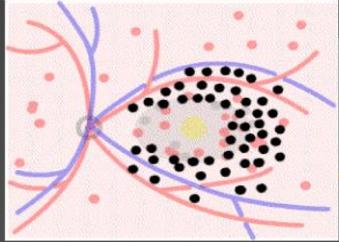
ne here and a state of the second state of the

Modified ETDRS

Direct treatment to microaneurysms and grid to thickened areas only

Mild Macular Grid Laser Technique


- Diffuse widespread area of grid treatment to macula in thick and nonthick areas
- No treatment of microaneurysm


Focal/Grid Photocoagulation Treatment

DRCR.net technique:

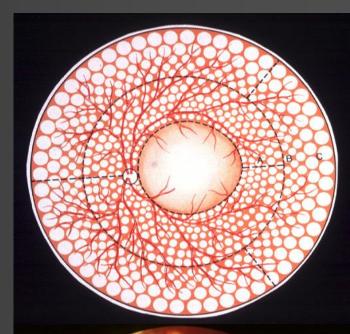
Burn Size	50 microns		
Burn Duration	0.05 - 0.1 seconds		
Wavelength	Green to yellow		
Intensity	Barely visible (light gray)		
Grid Treatment	Cover areas of diffuse retinal thickening or nonperfusion 2 burn widths apart*		
Direct treatment of microaneurysms	All microaneurysms are treated directly, but only in areas of retinal thickening		
Placement of laser treatment	Retina thickening 500 - 3000 microns from center of fovea		

*Cover areas of retinal thickening not judged to be due to microaneurysms 2 burn widths apart. If a fluorescein angiogram is obtained, cover areas of retinal thickening 2 burn widths apart within areas on angiography of diffuse leakage from retinal telangiectasis and consider covering areas of non-perfusion.

PANRETINAL LASER

DEFINITIONS (prLC): disseminated laser coagulation (arcades ≥ equator)

mild scatter (fs):


- 600 <u>1200</u> spots (initially)
- spot distance ≥ 1 spot diameter

full scatter (ms):

- 1200-2000 spots (initially)
- spot distance < 1 spot diameter</p>

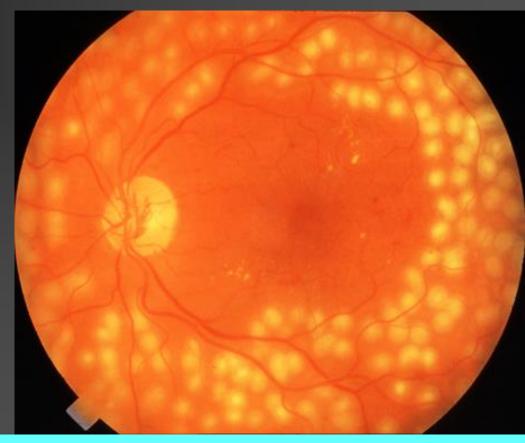
persistent PDR (Type 1 > Type 2):

- significantly more spots!
- almost no distance between spots!

PANRETINAL LASER

APPROACH:

CAUTIOUS


< 1000 spots / session

- ME?
- fractioning?

AGGRESSIVE

2 1000 spots / session

- faster fibrosis (NV)
- NO more side-effects?

Timely prLC reduces risk of blindness by 90% (DRS 1976)

PANRETINAL LASER "HARD" INDICATIONS

(HR – PDR: NVD / NVE & epiretinal / vitreous haemorrhage)

TYPE 1 DM	csME less extensive		
	Reacts less disastrous to prLC		
	» aggressive approach!		
	Full scatter (initially ≈ 1200 spots)		
	csME (first central LC <u>&</u> fast prLC / simultaneously)		
TYPE 2 DM	 Approach (extend of PDR & follow up?) 		
	 Avoid prLC without HR-PDR (► csME↑)! 		
	► csME (always <u>first central LC</u> ► prLC after 3/12?)		
	► moderate HR-PDR (CL ► <u>mild</u> scatter prLC)		
	► extensive HR-PDR (CL ► <u>full scatter prLC</u>)		
	very extensive HR-PDR (CL & fs-prLC)		

PANRETINAL LASER "SOFT" INDICATIONS

(Type 1 > Type 2)

Severe NPDR	extensive IRMA & venous beading in 4 Quadrants
	 ischemia progression to PDR?
	≻ <u>follow up</u> ?
Non-HR-PDR	No NVD / NVE & epiretinal / vitreous haemorrhage
	• csME ► VA?
	≻ <u>follow up</u> ?

PANRETINAL LASER

FOLLOW UP (after 4 – 6 weeks) "Stop / Regression of NV?"

<u>YES</u> :	> observe
<u>NO</u> :	
• mild scatter LC	▶ fill in
• full scatter LC	Fill in & extension (periphery)

PANRETINAL LASER

MANAGEMENT (progressive HR-PDR)

Laser	several thousand spots
	(fs-prLC + fill in + periphery)
	almost no distance between spots
	• VFD
	• Dark adaptation \downarrow
	 Colour vision ↓
ppV	> early?

LASER PARAMETER

DEPEND ON:

- > Laser type
- Laser glass
- > Extend of oedema (20% ↑ E in csME?)
- > Optical media
 - Energy
 - Spot size
 - Time

Shorter exposure time preferable:

- heat conduction ↓
- > (but energy ↑)

LASER MARKS:

- Mild bleaching (RPE)
- NO benefits from stronger marks!

Avoid

- damage of inner retina (NFBD)
- damage of Bruch's membrane (SRNVM)
- choroidal effusion
- serous RD
- haemorrhages
- epiretinal gliosis & traction (VA!)
- pain

LASER PARAMETER (FD NdYAG 532 & Argon)

LASER	GLAS	PARAMETER
Central - focal	Area centralis (ca. 1: 1)	 N? T = 100 - 150 ms D = 50 - 100 µm E = 50 - 100 mW
Central - grid	Area centralis (ca. 1 : 1)	 N? T = 100 - 150 ms D = 100 - 200 µm E = 50 - 100 mW
Panretinal	Quadraspheric (ca. 1 : 2)	 ms: N = 600-1200 fs: N = ≥ 1200 T = 100 - 200 ms D = 200 - 300 µm (x 2) E = 100 - 400 mW

ADVERSE EFFECTS (LASER)

ne here and a state of the second state of the

ILUMINATION (SL & Microscope)	AIMING BEAM	LASER BEAM
Photic damage (e.g. blue light) > transient & permanent > diseased / treated / elderly retina	 Blue-cone damage (Argon laser) > patient's retina > observer's retina (reflection off contact glass) 	 Unintended absorption > iris, synechiae, cataract, haemorrhage Inadvertent laser > fovea (eye movement,
 > duration of exposure > avoid excessive illumination (macula!) 	 red coaxial beam blue-green protective filter 	 3 mirror glass) > large vessels (temporary occlusion, haemorrhage) Scatter of beam > opacities, vitreous haemorrhage, ME > myopic eyes (sensitive!)

Ionger wavelength

LASER SIDE - EFFECTS

TRANSIENT

Blurring of Vision

> mydriasis, pigment, iris?

Choroidal Detachment

- > myopic shift / ACG?
- > recovery over 10 days

Macula Oedema

- > BRB disruption (e.g. parafoveal & large areas)
- ▷ BRB (for 7 10d)
 - ► VA↑ 4 weeks (Type 1 DM)
 - permanent (Type 2 DM)?

Axoplasmatic Flow

> NFL-defects (laser of Ma)

Headache (24 hrs)

➤ anxiety?

MEDIUM TERM

Macula Oedema

- > parafoveal & prLC
- > pre-existing ME
- > diffuse ME
- > may persist up to 3 months with permanent drop of VA
- VA may drop to CF
 (severity does NOT correlate strictly with final outcome)
- > Type 1 DM: mostly recovery to pre-OP VA
- > Type 2 DM: ME may persist with permanent loss of VA!
- > strict indication for prLC in elderly Type 2 patients & BP
- > central laser (first / same
 time?)

PERSISTENT

Loss of VA (1-2 lines)

- > prLC (photochemical?)
- > may improve (18/12)?

Accommodation↓

Iong cilliary nerve damage

Dimness

> dose related (> 2000 spots)

Nyctalopia (rods)

- > prLC (rods / others?)
- > prolonged adaptation time

Colour Vision (cones)

> direct damage / scatter

Photophobia (RPE)

> dose related, fair skin, PSC

Loss of VF (rods & cones)

> dose related (fs + fill in)

LASER COMPLICATIONS

PATIENT	SURGEON	OBSERVER
Anaesthesia (rare)	Accidental Exposure	Accidental Exposure
Anterior Segment (rare) > burns (cornea / lens) > transient iritis (accid. laser) Raised IOP (rare) > ACG / pigment dispersion / steroids / rubeosis iridis PVD (therapeutic!) > RD / haemorrhage	 > mechanical shutter failure > reflected laser light (CG) > blue colour vision loss (Argon / aiming beam) 	> reflected laser light (CG)
Retina		
 Fovea (movement / orient.) haemorrhage (sr / re / chor) CNV (Bruch's membrane)) 	> fixed protective filters	 > at least 1 m distance > protective goggles (correct wave-length?)
Hard Exudates (1 / 52)		> laser room protection
Enlargements of Burns		(signed & lock)
Choroidal NV		
Iong wave-length / high E		

PROBLEMS & DIFFICULTIES

ANXIETY	PAIN	SMALL PUPIL	CATARACT	MYOPIA	OBESITY
Explanation	Anterior: e.g. 3-6-9-12	DM?	Axial CG	Thin RPE & prominent	Limited patient
Reassurance	o'clock	Synechiae?	Long nm	choroidal vessels	access (SL)
Success	Long nm	Opacities?	Surgery? (CR / ppV)	FLA (NV?)	Low SL & move chair far from laser
Medication?	High mW	90 D non- contact glass		High energy	HIO-Laser?
	Pigment↓	Mydriatics?		necessary ("burns")	
	Medication?	Surgical		Risk of: ⋅ CNV	
	pb / rb?	dilatation?	18	• choroidal haemorrhage	
				• pain	

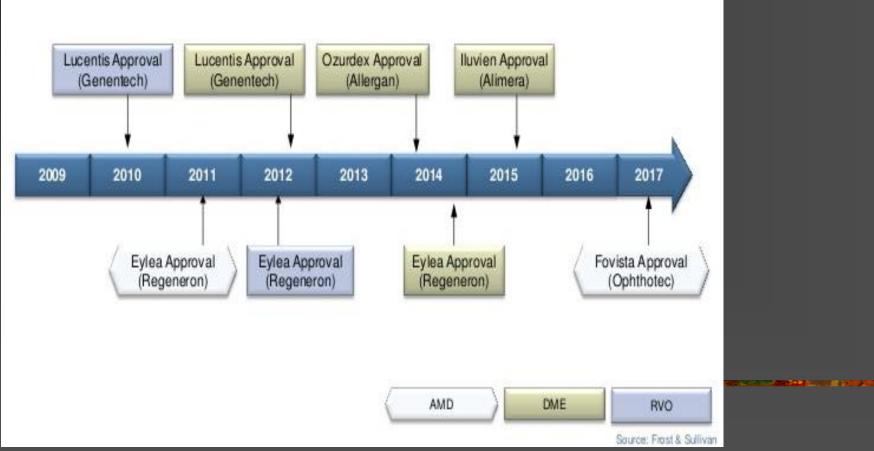
DIABETIC MACULOPATHY (management)

and a second state of the second state and the second state and the second state of the

BEFORE LASER:

- Regulate BS, BP & Lipids
- Stabilise cardio-pulmonar & renal situation

ISCHEMIC	FOCAL EXSUDATIVE	DIFFUSE EXSUDATIVE	CYSTOID
FLA > perfusion?	<u>focal LC</u> ▶ visible	grid LC > entire thickened	<u>often</u> <u>irreversible!</u>
RISK (laser) ▶ damage of	aneurysms?	retina	therapeutic trial with e.g. (?)
remaining peri- foveolar	<u>grid LC</u> ≽ areas of		grid LCTriamcinolone
capillaries?	thickened retina		• Diamox


MANAGEMENT – PHARMACOTHERAPY

and the second second second second

MEDICAL – FDA TIMELINE APPROVALS

Total Retinal Therapeutics Market: Timeline of Key Events, US, 2009–2017

DIABETIC RETINOPATHY TREATMENT NEWER DEVELOPMENTS:

The use of anti-vascular endothelial growth factor antibodies has been shown to be useful in the treatment of DR

Anti-VEGF antibody treatment appears to be useful for both macular edema and proliferative retinopathy

Studies to determine the exact role of anti-VEGF treatment in relation to laser treatment in specific situations are underway.

PRINCIPLE OF DRCR.net DME TREATMENT Intravitral Anti-VEGF

➢ Improving on OCT or VA → Inject Improving = OCT CST decreased by ≥ 10% or VS letter Score improve by ≥ 5

Worsening on OCT or VA — Inject Worsening = OCT CST increased by > 10% or VA letter score decrease > 5

 Stable: Not Improving or Worsening on OCT or VA
 Inject unless stable since last 2 injection which case inject only if before 24 weeks visit when OCT
 >250nm and VA 6/6

OTHER INTRAVITRAL ANTI-VEGF RETREATMENT STRATEGIES

RESTORE: 0.5 mg ranibizumab

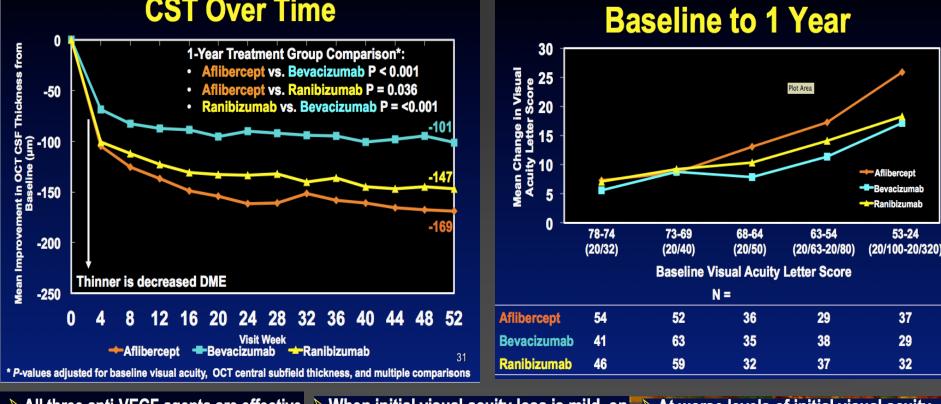
and a second second

 3 consecutive monthly injections, then retreat if visual acuity not stable, regardless of OCT – once stable, withhold injection and resume if worsen until stability again

RIDE/RISE: 0.5 mg or 0.3 mg ranibizumab

Monthly treatments for 36 months (36 injections)

VIVID/VISTA: 2 mg aflibercept

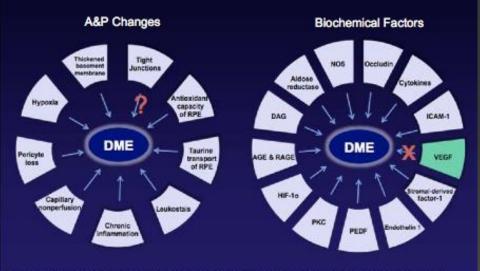

 5 consecutive monthly injections, then every other month through 36 months (21 injections)

Anything you like? – ok if outcomes mirror DRCR.net visual acuity outcomes (mean change from baseline of 10 letters) and frequency of injections (median of 15 through 36 months, median of 16 through 5 years)

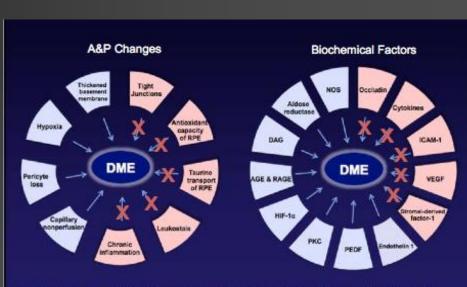
> Mitchell P, et al. JAMA Ophthalmol . 2013;131(10):1339-47; Brown DM, et al. Ophthalmology . 2013;120(10):2013-22; Korobelnik JF, et al. Ophthalmology . 2014 Jul 8. [Epub ahead of print]

COMPARATIVE EFFECTIVENESS STUDY OF AFLIBERCEPT, BEVACIZUMAB, OR RANIBIZUMAB FOR DME

Overall Mean (µm) Change in OCT CST Over Time



- All three anti-VEGF agents are effective treatments for DME causing vision impairment.
- When initial visual acuity loss is mild, on average there is little difference in visual acuity at 1-year.
- At worse levels of initial visual acuity aflibercept is more effective at improving vision.


Visual Acuity Mean Change:

STERIODS IN DME -PATHOPHYSIOLOGY

Early focal leakage is primarily VEGF-driven, but when it advances to diffuse leakage, leading to fibrosis, pigmentary alterations, and loss of PRs, the equation changes. The process is now primarily inflammation driven,

References: Pearson PA. CME treatment options: future therapies—curitoxistentids <u>http://www.stpo.org/cotomentaliancbulisCME.pd</u> DAG~discylgiverol; HIF-typoxia-induced factor; ICAM-intercetular adhesion molecule; NOS-nitric exite synthese; PEDF-pigment epithetium-

References: Pearson PA, DME treatment options: future therapies -- conticosteroids.http://www.alpo.org/documents/handouts/DME.pdf

DAG=diacytglycerot: HIF=hypoxia-Induced factor; ICAM=intercellular adhesion molecule; NOS=nitric oxide synthese; PEDF=pigment epliheliumderived factor; PKC=protein kinase C; VEGF=vaecular endothelial growth factor.

STERIODS -- INTRAOCULAR DEVELOPMENT

		A DESCRIPTION OF A					
	NOVA63 035 NVG	Posurdex (Ozudex) Allergan	Kenalog BMS	I-Vation SurModic s	Retaane Alcon	Retisert B&L	Medidur Alimera
				Jon Ra			
API	Dexametha sone palmitate	Dexamethaso ne	Triamcinolon e acetonide	Triamcinolon e	Anecortave acetate	Fluocinolon e acetonide	Fluocinolone acetonide
Administrat ion	Injectable emulsion	Injectable implant (DDS)	Injectable suspension	Implant (DDS)	Juxtasclera I injection	Implant	Injectable implant
Duration	6-9 months	1-3 months	1-3 months	12 months	6 months	30 months	18-36 months
Indication / Dev	DME Phase I	DME Phase III	All Off label	DME Phase I, III	ARMD Phase III	DME, Phase 2b/3	DME Phase III
Comment	Reduction of side effects ?		Toxic excipients			\$ 18,250	

STERIOD – (Intravitreal)*

Advantages of Steroid

- Less Frequent Dosing
- Treat Inflammatory Component
- Okay in Pregnancy
- No Systemic Risk
- Some Patients Respond Dramatically, Even if No Response to Anti-VEGF Agent
- Ozurdex Helpful in Vitrectomized Patient

Disadvantages of Steroid

Cataract

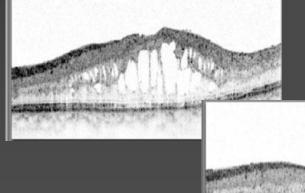
Virtually 100%, Significant Problem Within One Year

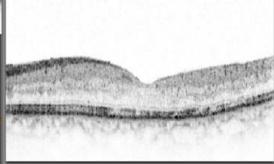
Glaucoma

- 40% Require Therapy (60 % Do Not)
- Filter or Surgical Removal of Steroid Can be Necessary

Consider Intraocular Steroid

Anti-VEGF Failure


- Significant Edema and Poor Vision after 6 Injections and Laser
- Pseudophakic, not Severe Glaucoma


Recent Cataract Surgery (CME Component)

Chronic Edema

Systemic Factors

Stroke, Heart Attack, Non-healing Wound, Pregnancy

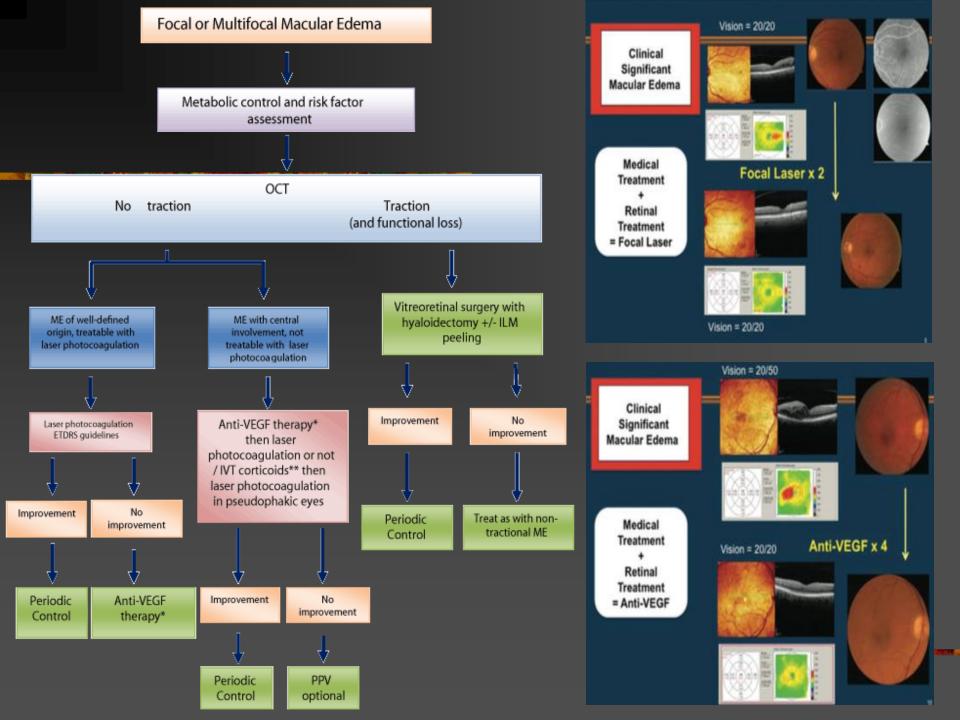
Diffuse diabetic maculopathy

SUMMARY FOR DME

QUESTIONS TO CONSIDER

- 1. What is the Vision
- 2. Is the Centre of The Fovea Involved
- 3. Ocular Risk Factors: Lens, Glaucoma, Steriod Responder, PDR
- 4. Systemic Risk Factors: Stroke, Heart Attacks, Surgery, Ulcers
- 5. Ability to Foillw Up
- 6. Who is Paying

INTRAVITRAL ANTI-VEGF INJECTION

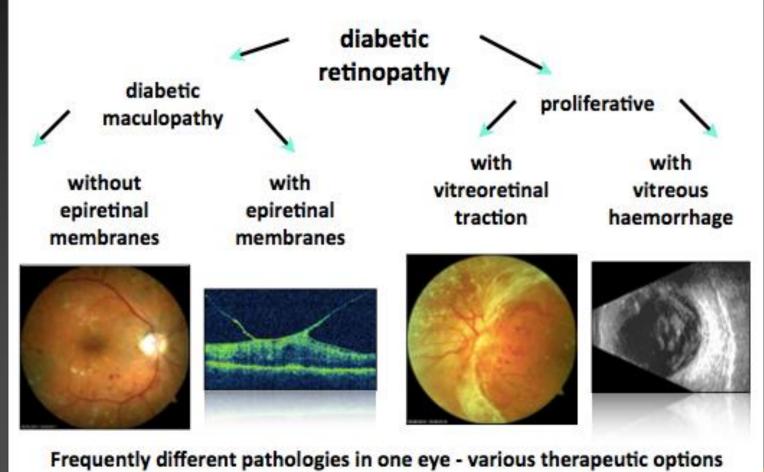

- Centre Involving Edema
- Decreased Vision 6/9 or Worse
- First Line begin with Anti VEFG Agent (Less Side Effect)
- Consider the various Option DRCR.net, Restore, Rise and Ride, Vista and Vi

FOCAL LASER

Edema Threatening but not Involving the Central Macular - Prior to PRP, Cataract Surgery or Worsening Vision Poor Compliance Uncertain Follow up Cost Burden

CONSIDER INTRAOCULAR STEROIDS Anti-VEGF Failure

- Significant Edema (Chronic) and the
- Poor Vision after 6 injection and Laser
- Pseudophakic or Planed Lens extraxtion, Severe Glaucoma
 Recent Cataract Surgery (CME Component)
 Chronic Edema (Diffuse Edema)
 Systemi Side Effect – Stroke, Heart
 Attacks, Surgery, Non healing Wound,
 Pregnancy



SUMARY LOCAL TREATMENT (PDR)

DIAGNOSIS	TREATMENT
PDR (HR)	pan retinal laser coagulation
vitreous haemorrhage	ppV
retinal detachment	ppV / RD-surgery
tractional csME	ppV & mp
non-responsive PDR	ppV & endolaser

VITRECTOMY in DR*

available - complex individual therapeutic decision-making

MANAGEMENT - HIGHLIGHTS

and the second states and the second state and the second states and states

- <u>Strict blood-sugar control</u> is the single most important factor to prevent visual loss (early)
- A poly-pragmatic "vasoprotective" approach significantly reduces cardio-vascular mortality and diabetic retinopathy
- Early laser treatment (csME) reduces severe visual loss by 50-75%
- Timely treatment of PDR (prLC / ppV) reduces severe visual loss by 65-75% & blindness by 90%
- Effective bi-directional communication and cooperation between diabetologists and ophthalmologists is essential for the complex management of diabetics

PLANING

<u>VISION 2020</u>

NATIONAL DEVELOPMENT PLAN

GHANA

(NPBWG / K.H.M. Kollmann)

INTERVENTION STRATEGIES (≥ 5-10% or more blindness due to DR?)

COMMUNITY

MEDICAL STAFF

SCREENING

DR - CENTRES

- awareness (DM & blindness)
- change of behaviour
- systemic control (BS, BP...)
- communication & co-operation
- on Dx & annually
 - Iaser (& ppV), training
- communication & co-operation

SCREENING

WHO?

Ophthalmologist OCO Optometrist / Optician / ON / OA ... ? GP ... ?

HOW?

Fundoscopy (dilated!) Stereoscopic SL-Biomicroscopy Fundus photography?

Dx / annually / findings:

TYPE 1 (puberty / 5 years DM) TYPE 2 (on Dx of DM!)

DIABETIC RETINOPATHY (SUMMERY)

DIABETIC RETINOPATHY:

- Major cause of avoidable blindness (increasing world-wide)
- > <u>NOT</u> a late manifestation of DM
- Early & sensitive indicator for <u>cardio-vascular risk</u>
- Assists in precise categorisation of vascular high-risk patient
- Chronic <u>Hyperglycaemia</u> & <u>Hypertension</u> are most important risk factors

DIABETIC RETINOPATHY (SUMMERY)

nne here a anne a a an Arte barr 🛛 the an Arte barr her an Arte barren ar a bhairth an Arte barr her a barr a barr a barra a an Arte barr

MANAGEMENT:

- Poly-pragmatic vasoprotective approach is efficient & costeffective
- Need to promote evidence based management (DM & DR)
- Effective <u>bi-directional communication and co-operation</u> between diabetologists & ophthalmologists essential
- Research & appropriate national planning important to address epidemic dimension of DM & DR

DIABETIC RETINOPATHY (Photos & Diagrams)

- American Academy of Ophthalmology: Diabetic retinopathy 1992
- American Academy of Ophthalmology: Ophthalmology Study Guide 1982
- Diabetes: VISION 2020 workshop Mombassa 2003
- > AMP Hamilton et al: Management of Diabetic Retinopathy, BMJ 1996
- A Kampik: Biochemie statt Chirurgie bei vitreoretinalen Erkrankungen, MOG Weihnachtssitzung 2002
- A Kampik: Vitrectomy current indications, techniques, and results, OSEA 2003
- J Kanski: Tutorials, 49 Diabetic retinopathy, 2001
- RGM Michels: Vitreous Surgery 1982
- HMA Towler, JA Patterson, S Lightman: Diabetes and the eye, ULC, 1998 (2nd ed.)

THANK YOU!